Geometry of Entangled States , Bloch Spheres and Hopf Fibrations

نویسنده

  • REMY MOSSERI
چکیده

We discuss a generalization to 2 qubits of the standard Bloch sphere representation for a single qubit, in the framework of Hopf fibrations of high dimensional spheres by lower dimensional spheres. The single qubit Hilbert space is the 3-dimensional sphere S. The S base space of a suitably oriented S Hopf fibration is nothing but the Bloch sphere, while the circular fibres represent the qubit overall phase degree of freedom. For the two qubits case, the Hilbert space is a 7-dimensional sphere S, which also allows for a Hopf fibration, with S fibres and a S base. A main striking result is that suitably oriented S Hopf fibrations are entanglement sensitive. The relation with the standard Schmidt decomposition is also discussed

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two and Three Qubits Geometry and Hopf Fibrations

This paper reviews recent attempts to describe the twoand threequbit Hilbert space geometries with the help of Hopf fibrations. In both cases, it is shown that the associated Hopf map is strongly sensitive to states entanglement content. In the two-qubit case, a generalization of the one-qubit celebrated Bloch sphere representation is described.

متن کامل

The Blaschke Conjecture and Great Circle Fibrations of Spheres

We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration. We use elementary differential geometry, and no surgery or K-theory, to carry out the construction—indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives. This result is new only for 5 dimensional spheres, but our new method of proof is elementary.

متن کامل

The Topological Blaschke Conjecture I: Great Circle Fibrations of Spheres

We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration. We use pure geometry, and no topology, to carry out the construction—indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives.

متن کامل

Mixed State Geometric Phase from Thomas Rotations

It is shown that Uhlmann’s parallel transport of purifications along a path of mixed states represented by 2 × 2 density matrices is just the path ordered product of Thomas rotations. These rotations are invariant under hyperbolic translations inside the Bloch sphere that can be regarded as the Poincaré ball model of hyperbolic geometry. A general expression for the mixed state geometric phase ...

متن کامل

Quantum Entanglement Through Quaternions

Using quaternions, we study the geometry of the single and two qubit states of quantum entanglement. Through the Hopf fibrations, we identify geometric manifestations of the separability and entanglement of two qubit quantum systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001